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I. Phys. A Math. Gen. 28 (1995) 3645-3655. Rimed in the UK 

Gauge transformation for dynamical systems of Ising spin 
glasses 

Yukiyasu Ozeki 
D e p m n t  of Physics. Tokyo hti tute of Technology, Oh-okayama, Meguro-ku, Tokyo 152, 
Japan 

Received 16 ~anuruy 1995 

Abstract Dynamical systems of gauge-syymetric king spin glasses are investigated by the 
method of gauge transformation. Several exact relations M derived among dynamical quantitik 
such as the equilibrium autocomelation function and the nonequilibrium remanent magnetization. 
The same result as in the static case is obtained in terms of the equivalence ofthe ferromagnetic 
and the spin-glass order if the temperarure and the randomness satisfy a special condition 
(Nishimori line). An exact eqnifalence of non-equilibrium relaxations in the spin-glass phase 
is derived beween the remanent magnelization evolved from the strong-field limit and the 
autoconelation function from a supercooled sta te  We also have a plausible argument for the 
absence of a re-entrant uansition using the p w t  dynamical relations. 

1. Introduction 

In the last decade, numerous studies have been made on the theory of short-range spin glasses 
[ I ,  21; in particular, the Edwards-Anderson-type king spin-glass models have attracted 
much attention. In the 3z.I model with symmetric bond distributions (the concentration of 
the ferromagnetic bonds is 4). the existence of the spin-glass (sG) phase has been confirmed 
in three dimensions [3,4]. In the asymmetric case, in which paramagnetic PM, ferromagnetic 
(FM) and SG phases appear, the phase diagram has been obtained in two and three dimensions 
[5-13]. 

The method of gauge transformation [14-161 is a powerful technique for deriving 
analytic results in the kJ or the Gaussian king spin glasses. It provides the internal 
energy and an upper bound on the specific heat exactly as non-singular functions of the 
temperature on a special line in the randomness-temperature phase diagram. This line is 
called the Nishimori line [14]. Further, it is proven that the boundary between the FM 
phase and non-FM one (SG in 3D) in the temperature lower than the multicritical point, at 
which the Nishimori line intersects, is vertical or reentrant. A typical phase diagram in the 
randomness-temperature plane is shown in figure 1. Kitatani 1151 introduced a model with 
a slightly different bond distribution, and showed the verticality which implies the absence 
of re-entrant transition; although he made a plausible but unproved assumption about the 
thermodynamic behaviour of the modified model, the result is consistent with previous 
theories [M, 10,ll. 131 and experiments on king-like spin glasses [17-191. Recently, the 
gauge transformation has been applied to gauge glasses with various symmetries [16]. 

With all such important results, the method of gauge transformation has not yet been 
applied to dynamical systems. The dynamics is one of most important aspects in spin 
glasses because of the slow relaxation [I, 21. In the mean-field theory, the non-ergodicity 
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Figure 1. Typical phase diagram of king spin glasses 
in the Kp-K plane (Kg controls the randomness and 
K = JfkeT) .  The broken line is the Nishimori 
line, Possible rm phase boundaries in low temperature 
region are indicated by dotted lines; (v) vettical and 
(r) re-enmt. 

x) 

below the freezing temperature is significant to understand the nature of spin glasses [20]. In 
short-range systems, the study of dynamical properties [41 has been insufficient as compared 
with the static case. To investigate the generality of the mean-field field picture is one of 
most important problems in the theory of spin glasses. Thus, exact statements are highly 
desirable for the progress in this field. 

In this paper, we study the gauge transformation for dynamical systems of Ising spin 
glasses. First, we define the stochastic dynamics of Ising spin glasses in section 2. Then, the 
gauge transformation is introduced for such dynamical systems in section 3. Using the exact 
dynamical relations obtained in section 3, we discuss the various properties of the system in 
section 4. Our purpose is (i) to prove the exact equivalence of non-equilibrium relaxations 
in the SG phase from two distinct initial states, the strong-field limit and a supercooled 
state, (ii) to examine the dynamics on the Nishimori line and confirm the consistency with 
the results obtained by the gauge transformation in the static case, and (iii) to show the 
absence of re-entrant transition from the FM phase to the SG. The last section is devoted to 
the summary. 

2. Stochastic dynamics of king spin glasses 

The Hamiltonian we consider is 

where Si is an king spin taking +I  or -1, S = (SI, S,, . . . , SN) represents a configuration 
of total N spins. The set w = (012,. . .) represents a configuration of total Ne bonds, and the 
summation is taken over all bonds; we make no restrictions on the type or the dimension 
of the lattice, whereas one may suppose usual nearest-neighbour interactions on the d- 
dimensional hypercubic lattice. The exchange interaction Jij = Jo i j  is a random variable 
with a distribution such as the f J  or the Gaussian. For a particular bond configuration, the 
thermal distribution at the temperature T = J /kBK is defined by 
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The random average is denoted by 

[. . .Ic = P(w; K p ) .  . . . (2.3) 
~~ Y 

The general form of the bond distribution in a gaugesymmetric model is expressed as 

(2.4) 

where F = (+, +. . . , , +) represents the spin state with Si = +1 for all i. In the +J 
distribution, o i j  takes +1 or -1, p = (1 + is the concentration of +J bonds, 
Y = (Zcosh KJN" and D = 1. In the Gaussian distribution, wii takes any real values, K p  
is the centre of distribution Jo, Y = eNBKP2/' and D = e-Em$/' (the variance is set to be 
unity). We summarize these functions in table 1. In both dishibutions, K p  = 0 and 00 

correspond to the full random case and the non-random case, respectively. The Nishimori 
line is located on K = K p  (see figure 1). In the following, for simplicity, we sometimes 
omit the dependence on spin set, bond set, inverse temperature K and/or randomness Kp 
from functions defined above, if they are trivial or unimportant. 

Table 1. The summary of functions appeared in the bond dishibutions. 

*J  Gaussian 

W j j  *l Any real value 

K p  K p  = $In- K p  = Jo 

Y ( K p )  ( 2 ~ o s h K ~ ) ~ B  e x p ( i N ~ K , ~ )  

P 
1 - P  

Since the Ising system has no intrinsic dynamics, we consider a Markov process for 
~a fixed bond configuration, in which the density of state evolves with the master equation 
P21 

The solution of the master equation is given by 

PAS) = (SleTS') P ~ ( s ' ) .  
S' 

The matrix element (SlerWIS') plays a role of the conditional probability between two 
different times, and is defined by 

(Sle'wIS') = ~ ~ ( s ~ w ~ I s ' )  (2.7) 
f" 

n=O n. 

where Scl) = S'. The matrix W is composed of non-negative off-diagonal elements, and 
satisfies two conditions, 

(2.9) W(SlS')p,(S'; K ,  w)  =~ W(S'lS)p,(S; K, w )  
W(S'1S) = 0 1 (2.ioj 

S' 
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The former is called the detailed balance, and guarantees the stability of the equilibrium 
distribution pc.  The latter is necessary for the conservation of the probability. It has been 
proven that all eigenvalues of the matrix W with (2.9) and (2.10) are real and negative except 
the zero eigenvalue corresponding to the equilibrium distribution [Z]. Thus, all solutions 
with any initial conditions tend to the equilibrium distribution as t + CO. In general, the 
matrix element W(S1S') depends on the bond configuration w. The conditions (2.9) and 
(2.10) are automatically satisfied by the expression with a symmetric matrix w(SlS'), 

(2.11) 

The matrix w(S1S') depends on &e detail of the dynamics such as 

W(SIS') = W O S l [ S .  S'IP,(S) s(AIS.S'l)p,(~f)B(AIS.~) (2.12) 

for the Metropolis dynamics [23], and 

for the Glauber dynamics [24], where O(x)  is the step function, 

is the one-spin-flip operator and 

A[S, S'] E %(S) - %(ST) 

(2.13) 

(2.14) 

(2.15) 

is the energy difference of two states. 

function [(Si(0)S;(f))2]c is defined from 
We consider the following dynamical functions. The equilibrium autocorrelation 

(s~(o)s; (~) )?  = C(SletWIS')  s;s;P,(s'; K, w )  . (2.16) 

Note that (. . .)? in (2.16) represents the dynamical average in equilibrium not the static 
one (. . . ) K .  In the thermodynamic limit, when f -+ CO, [(S;(O)S;(t))2], converges to the 
Edwards-Anderson order parameter qEA, which is non-vanishing in FM or SG phases [l, 21. 
We also define a non-equilibrium autocorrelation function [(S;(O)S~(I))$']~ by 

S.S' 

(Si(O)Si(f))z = C(SIe'"IS') s~s,'~.(s'; ~ ' , w ) .  (2.17) 

It is different from the equilibrium one, equation (2.16); note that the temperature at t = 0 is 
J/kBK', while the system evolves with J / k s K  in t > 0. Another quantity is the relaxation 
function of remanent magnetization [(S~(I));], defined by 

(Si(r))T; 3 ' ~ J S ~ ~ * ~ I F ) S ~  (2.18) 

which is the local (site) magnetization at time f evolved from the complete FM state, 
F = (+, +, . . . , +), at I = 0. When r + 00, the thermodynamic limit of [ (S i ( t ) ) ; lc  
approaches the spontaneous magnetization. Similar function for the exchange energy is 
defined in the same relaxation process as [ ( ' H ( t ) ) f ] c .  

S.S' 

s 
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3. Gauge transformation for dynamical systems 

In this section, we extend the technique of gauge transformation to dynamical systems. 
Let us first introduce the gauge transformation in static systems. The transformations for 
functions of S and w are defined by 

where U = (U,, u2, . . . , U N )  is an arbitmy state of N king spins. Both transformations form 
p u p s  homomorphic to 2; and Z,”, respectively; 2, is a cyclic group. The Hamiltonian 
%(S; w) is invariant under the transformation UuVu, 

(3.3) U,Vu7?(S; w)  = E ( S  U ) .  

The bond distribution (2.4) is transformed as 

for the f J  and the Gaussian distributions, since D ( w )  is an even function of all o;j and 
satisfies 1161 

VUD(W) = D(w) .  (3.5) 

~~ 

Note that the spin set in pe and the temperature are different from the usual ones. Another 
important property is the invariance of summation (or integral) for S and w; 

(3.6) 

(3.7) 

Using equations (3.3), (3.4) and (3.6), one can show [I61 that the partition function is 
gauge-invariant with respect to Vc: 

(3.8) VcZ(K,  w) = Z ( K ,  U). 
Note that we use the terminology ‘gauge invariant’ only for the functions of the set w 
invariant under V,. 

As seen in the previous section, two different spin states, the initial state S and the 
final state S, are necessary to describe the dynamical behaviour of the stochastic system. 
Thus, we introduce the transformation for S‘, 

U’ U‘ . s; 4 s;ui. (3.9) 
To examine the gauge transformation of the functions defined above, we need to show the 
invariance 

U ~ U L V ,  (SlerWIs’) = (SletWIS’). (3.10) 

From equations (3.3)-(3.8), it is easy to see that p(S; K, U), SI [S, S’] and A[S. S‘] are 
invariant under UuU; Vu. This yields the invariance 

u,u:v,w(sIS’) = m(SIS’) (3.11) 

for the Metropolis (2.12) and the Glauber dynamics (2.13). Equations (2.11) and (3.11) 
yield 

uuu:v,w(Sls‘) = W(SIS’) (3.12) 
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where the invariance of summation for S" like equation (3.6) is used in the derivation for 
the case S = S'. Let us consider (2.8) term by term in the expansion of (SlerWIS'). 
Similarly to S and S', the gauge transformations for S(" (k = 2, . . . , n)  are introduced as 

Vu 'W . ' sp) * + q"'; , (3.13) 

Then, equation (3.12) with the invariance of summation for S") leads to 

(3.14) 

providing the invariance (3.10). 

into account, one can show that ($(O)S;(t))? is gauge invariant: 
Using equations (3.3) and (3.10) with the invariance of summation for S and S' taken 

VuQ(o)si(t))? = (Si(O)Si(r));. (3.15) 
As shown in appendip A, the random average of gauge-invariant function Q ( w )  can be 
expressed as 

(3.16) 

Thus, we obtain 

On the other hand, (S;(f)); is not gauge invariant, and is transformed as 

vu ( W W ~  = uuvu(sle'wIF)si 
s 

= (sle*Wlu)S;u; (3.18) 
S 

where we use 

U,V,(Sle'wIS') = U;(SIefWIS') = (SlerwIus') (3.19) 
obtained from (3.10). The variable US' represents the spin state (ulS;, U&, . ..,UN$,,). 

Using equations (3.4), (3.7) and (3.18), one obtains 

D ( w ) z ( K p ,  ,oe(u: K,, w )  (Sle'WIu) ~ ; u ; .  (3.20) 

Since the left-hand side of (3.20) is independent of U, one can take the summation over all 
U and divide by 2N: 

w S 

I ( s i ( t ) ) ~ l ~  = (3.21) 
w 

Then, from equation (3.16), we have an exact relation 

[CS;(S,;f], = [(si(o)si(f))2]c. (3.22) 
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The function (S;(O)S;(t))2 is the non-equilibrium autocorrelation function defined in (2.17); 
the temperature at t = 0 is J/kBKp. Similarly, equation (3.3) leads to 

[(x(t)){], = [(x(t))K KP 1,. (3.23) 

4. Discussions 

Using the rigorous relations obtained above, we discuss the exact physical properties of the 
king spin glasses. 

4.1. D y m i c a l  property in the spin-glass phase 

First, let us consider the dynamics in the region with sufficiently strong randomness (small 
Kp) and sufficiently 1ow.temperatures (large K), where the SG phase appears if any. In 
such a region, [(Si(O)Si( t ) )p] ,  and [ ( X ( t ) ) p ] ,  describe a non-equilibrium process in the 
temperature J / k B K  relaxed from a supercooled state (cooled immediately from a high 
temperature with K p  to a low temperature with K); note that we assume nothing about 
the stability of the supercooled state., On the other hand, [(S;(t)):]c and [(Z(t))$],  are 
regarded as the remanent magnetization and the exchange energy in zero field relaxed from 
the strong-field limit. Thus, equations (3.22) and (3.23) imply the exact equivalence of 
non-equilibrium relaxations from the strong-field field limit and from a supercooled state. 

4.2. Dynamical propeq  on the Nishimori line 

Next, we examine the dynamics on the Nishimori line, K = K p ,  where the non-equilibrium 
relaxation (.~. .)? coincides with the equilibrium one (. .)2p. From equations (3.17) and 
(3.22), we have 

(4.1) 
which indicates the equivalence of the Fwand the so orders. Since, in the SG phase,,the SG 
order remains finite while the FM order disappears, this implies the absence of the SG phase 
on the Nishimori line as in the analysis of the static correlations [14]. 

[ (w)):~]~ = [(si (0)s; (t))?p], 

The exchange energy of the initial state F is given by 

which is equal to the equilibrium energy on K = K p  [14, 161. It is easy to see that, if 
K = Kp, the right-hand side of (3.23) is independent of time t and equal to the static 
equilibrium average 

(4.3) 

Since the equilibrium energy is an increasing function of the temperature, we expect that 
[('H(t))g]c is an.increasing function of t above the Nishimori line and a decreasing one 
below it. 

The above result suggests a practical definition of the Nishimori line in real spin glasses. 
Actually, it is difficult to apply the present method directly to real materials because of the 
lack of gauge symmetry. However, for every spin-glass system, one can determine the 
special line defined below in the temperature-randomness phase diagram, even if it is not 
gauge-symmetric. Let us consider a total system, composed of a spin-glass material with 
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a non-magnetic system at temperature T left in a sufficiently strong field for a long time. 
The non-magnetic system is supposed to have a comparable heat capacity to the spin-glass 
material, and plays a role of heat bath. If the field is strong enough, the intemal energy 
of the spin-glass material is almost independent of the temperature. When the field is 
suppressed from the system adiabatically, the spin-glass material absorbs heat from the heat 
bath if T t J / K B K ~  (above the Nishimori line), and emits it if T e J / K B K ~ .  Since this 
adiabatic process affects~ nothing directly on the nonmagnetic system, the temperature of 
the total system decreases above the Nishimori line and increases below i t  The former 
case shows a usual adiabatic cooling process whereas the latter one is an unusual heating 
process. Therefore, the Nishimori line can be defined by the border between such heating 
and cooling processes. It is an interesting problem in future to check the generality of the 
theory to real spin glasses by using the line defined above. 

4.3. Absence of re-entrant transition 

Finally, let us discuss the asymptotic behaviour of [ ( S j ( O ) S i ( ~ ) ) 2 1 ~  to show the verticality 
of the FM phase boundary in the case that the SG phase exists. In contrast with the results 
presented above, the following argument is plausible but non-rigorous. We use the argument 
introduced in the mean-field field theory [I, 2, 20, 211, however, no assumptions are 
necessary for the structure of the phase space. Thus, for generality, the possibility of 
several pure states is considered; the number of them is just one in the PM phase and two 
in the FM phase. We define a typical persistent time ZN depending on ( K ,  K p )  for large but 
finite systems, in which the system stays in one pure state. In the case of ultrametric space, 
there are several values of persistent times, and ZN is the shortest of them. In any phases, 
TN diverges as N +~ 00. At time t with ZN 31 t >> 1, since the system stays in the pure 
state a’ =a@’) in which the initial state S’ belongs to, the matrix (SIerwIS‘) approaches 
the equilibrium distribution restricted in a’, i.e. 

(SlefWIS’) - PAS; K)&,,(s)/w; (4.4) 

(4.5) 

(4.7) 

is the local magnetization at K in the pure state a. The summation of the pure states is taken 
over all those appearing at K in a given configuration. It is difficult to perform the random 
averaging of (4.6) exactly. We suppose that finite contribution in the random average comes 
from typical configurations in P(w; K p )  if the system is large enough. Then, we obtain the 
main contribution in the random average as 

where G$,Kp and r f ~ i , ~ ~  are the quantities typical at ( K ,  Kp) .  In the PM phase, the 
probability of existing non-zero local magnetization vanishes in the thermodynamic limit, 
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whereas it remains finite in ordered phases (FM or SG). We also suppose that the direction 
of any local magnetization does not change with the temperature in the ordered phases, 
providing riz>,xpriz>fl,>p 2 0. Accordingly, [{S;(O)S;(Q))?]~ which is equal to the FM 
order parameter, remans finite if and only if both ( K ,  K p )  and (Kp, K p )  are in ordered 
phases. This provides the verticality of the FM phase boundary implying the absence of 
reentrant transition. 

Although the above argument for the verticality, is not rigorous, the same result can be 
derived by the following qualitative argument. Since the long-time limit of such correlation 
function is expected to behave like a kind of order parameter, (i) the asymptotic behaviour 
should be prescribed by both phases where the initial point (Kpr K p )  and the fnal  point 
( K ,  Kp)~ locae .  It is helpful to consider the modified model [15, 161 whose Hamiltonian is 
identical with the original model, whereas the bond distribution including a fixed constant. 
a, 

(4.9) 

is different from the original model (a = 0 case). In appendix B, we show that average 
of any gauge-invariant quantity cannot distinguish the FM and the ,SG phases in the present 
systems using the exact property of the modified model. Gauge-invariant quantities can 
indicate only the boundary of PM phase, the onset of qw = 0. Since (S;(0)Si(t))2 is 
gauge invariant, (ii) the asymptotic behaviour does not change even when ( K ,  K p )  locate at 
the F M S G  phase boundary if ( K p ,  Kp) is not on the phase bounabry. On the other hand, 
it approaches the FM order parameter because of (3.22), implying that (iii) the asymptorric 
behaviour changes depending on $ ( K ,  K p )  is FM or not. At a glance, this contradicts with 
(i). However, they are not in conflict with each other if the Nishimori line intersects the 
multicritica1 point and the FM phase boundary is vertical in the temperature below it; in 
such case, ( K p ,  K p )  is on the FM-PM boundary whenever ( K ,  Kp) locates at the FM-sG 
boundary. This asymptotic behaviour is consistent with 4.8, and concludes the absence of 
reentrant transition. 

5. Remarks 

We have applied the gauge transformation to dynamical systems of Ising spin glasses and 
derived some exact relations in dynamical quantities. The equivalence of non-equilibrium 
relaxations in the SG phase has been shown between a kind of field-cooled remanent 
magnetization and the dynamical structure factor in a supercooled state like real glasses. 
On the Nishimori line, we found that the equilibrium relaxation coincides with the non- 
equilibrium one from the strong-field field limit. We propose a practical way to define the 
Nishimori line in real spin glasses. The absence of re-entrant transition from the FM phase 
to the SG has been confirmed by the present dynamical argument. The same method can be 
applied to other dynamical quantities such as the AC susceptibility. 

Although we restricted the dynamics to the Metropolis or the Glauber ones, the present 
method is applicable to the other ones with the invariance (3.11). It would be extended to 
other gauge-symmetric systems, which have the same transformation properties as equations 
(3.3) and (3.4), e.g. the gauge-glass system with the O(2) symmetry: 
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Appendix A. Random average of gauge-invariant qnantity 

To understand the main technique of the gauge transformation, we show the derivation of 
(3.16) following [16]. From the invariance of summation (3.7), 

holds for any U. Using equation (3.4) and the gauge invariance of Q(w), one obtains 

P d u ;  Kp, w)Q(W). ( A 4  
D(w)Z(Kp, W )  

Y N p )  [Q(w)lc = 

Since the left-hand side of (A.2) is independent of U, the right-hand side is unchanged if 
one takes the summation over all U and divide by 2N: 

This provides equation (3.16). 

Appendix B. Modified model 

In this appendix, we summarize the properties of the modified model (4.9) obtained 
previously [U, 161: the random average in the modified model with a is denoted by 

(...I: = ~ P a ( w : K p )  .... (B.1) 

Analysing the FM and SG order parameters defined from the static FM and SG correlation 

m . ~ ,  ~ p ) ’  R;,-ce lim \((sisj)E}tl P.2)  

w 

functions, 

the following properties have been found exactly for the model with a. The boundary of 
the paramagnetic phase, at which the edge of qa = 0 locates, is unchanged with a. The 
ordered phase on K = Kp + a must be the FM phase. The line K = Kp f a  is likely to 
intersect the multicritical point of PM, FM and SG phases. The FM phase boundary below 
K = K p  + a  is vertical or re-entrant. Further, the verticality can be shown exactly if the 
ordered phase, in the models with b # a, between the line K = K ,  +b  and the non-random 
case (Kp = CO) is FM; this assumption is quite plausible since both boundaries exhibit only 
PM-FM transition. Typical phase diagram for positive and negative a is shown in figure B1. 
These properties are coincides with those for the original model if a = 0: 

It is shown [16] that the average of any gauge-invariant quantity is independent of a, 
i.e. 

lQ(w)}: = [ Q ( w ) L .  (B.4) 
Since the FM correlation functim as well as the FM order parameter (B.2) are not gauge 
invariant, the boundary of the FM phase changes with a. Thus, the qualitative behaviour of 
averaged gauge-invariant quantities at ( K ,  K p )  should not be influenced by the fact whether 
( K ,  K p )  is FM or not. In other words, any gauge-invariant quantity can not be an order 
parameter for the FM phase in modified models including the original one (a = 0). 
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K 

Figure B1. Phase diagram of the modified model with 
positive and negative a corresponding to the original 
model in fizw 1. Possible vertical and reentrant 

“P boundaries &e indicated for both cases. 
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